Digital Humanities At Scale: HathiTrust Research Center

Beth Plale
Co-Director, HathiTrust Research Center
Professor, School of Informatics and Computing
Indiana University
New questions require computational access to large corpus

Investigate way in which concepts of philosophy are used in physics through

- Extracting argumentative structure from large dataset using mixture of automated and social computing techniques
- Capture evidence for conjecture that availability of such analyses will enable innovative interdisciplinary research
- Digging into Data 2012 award, Colin Allen, IU
New questions, cont.

Document through software text analysis techniques, the appearance, frequency and context of terms, concepts and usages related to human rights in a selection of English-language novels.

– Ronnie Lipschutz of UCSC is currently doing this analysis on one of Jane Austen’s books. He’d like to extend the work to encompass a far larger corpus.
New questions, cont.

Identify all 18th century published books in HathiTrust corpus, and apply topic modeling to create a consistent overall subject metadata.
GOOGLE DIGITAL HUMANITIES AWARDS RECIPIENT INTERVIEWS REPORT
PREPARED FOR THE HATHITRUST RESEARCH CENTER
VIRGIL E. VARVEL JR.
ANDREA THOMER
CENTER FOR INFORMATICS RESEARCH IN SCIENCE AND SCHOLARSHIP
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Fall 2011
The study

• Dr. John Unsworth, a representative of HTRC, distributed invitations to participate in this study via email to 22 researchers given Google Digital Humanities Research Awards.

• Interviews were conducted via telephone, Skype®, or face-to-face, and all were audio recorded. All participants agreed to IRB permission statement via email.

• A semi-structured interview protocol was developed with input from HTRC to elicit responses from participants on primary goals of project.
Select findings

• Optical Character Recognition
 – Steps should be taken to improve OCR quality if and when possible
 – Scalability of scanned image viewing is necessary for OCR reference and correction
 – Metadata should expose the quality of OCR
Select Findings

• “Would like better metadata about text languages, particularly in multi-text documents and on language by sections within text. Automatic language identification functions would be helpful, but human-created metadata is preferred, particularly for documents with low OCR quality.”

• “primary issue was retrieving the bibliographic records in usable form, unparsed by Google. [...] process took 10 months to design the queries and get the data.”
HathiTrust Research Center: dedicated to provision of computational access to comprehensive body of published works for scholarship and education
→ HathiTrust is a large corpus providing an opportunity for new forms of computation investigation.

→ The bigger the data, the less able we are to move it to a researcher’s desktop machine.

→ Future research on large collections will require computation moves to the data, not vice versa.
Goal of HTRC

• HTRC will provide a persistent and sustainable structure to enable original and cutting edge research.

• Stimulate the development in community of new functionality and tools to enable new discoveries that would not be possible without the HTRC.
Goal, cont.

• Leverage data storage and computational infrastructure at Indiana U and UIUC,
• Provision secure computational and data environment for scholars to perform research using HathiTrust Digital Library.
• Center will break new ground, allowing scholars to fully utilize content of HathiTrust Library while preventing intellectual property misuse within confines of current U.S. copyright law.
HathiTrust Research Center

- Analysis on 10,000,000+ volumes of HathiTrust digital repository
- Founded 2011
- Working with OCR
- Large-scale data storage and access
- HPC and Cloud
Corpus Usage Patterns

Access by chapter

Access by page

Access by special contents (table of contents, index, glossary)
HTRC Timeline

• Phase I: an 18-mo development cycle
 – Began 01 July 2011
 – Demo of capability June 2012 (12 mo mark)
• Phase II: broad availability of resource, begins 01 January 2013
Governance

- HTRC Exec Management Team: Beth Plale (IU), chair; Robert McDonald (IU), Marshall Scott Poole (UIUC), J. Stephen Downie (IU), John Unsworth (Brandeis Univ)
- Advisory board
- MOUs guide IU-UIUC interaction and HTRC-HT interaction
- Laine Farley, California Digital Library, and HT Executive Committee is liaison to HTRC
- Google Public Domain agreement – in process of signing (IU and UIUC individually executing)
What is it architecturally?

- Web services architecture and protocols
- Registry of services and algorithms
- Solr full text indexes
- noSQL store as volume store
- Large scale computing
- openID authentication
- Portal front-end, programmatic access
- SEASR mining algos
One access point: through SEASR
SEASR: workflow used to generate tagcloud

Query = title:Abraham Lincoln AND publishDate:1920

4/11/12
Query = author:Withers, Hartley
Workflow invokes HTRC Solr index and HTRC data API.
HTRC Solr index

• The Solr Data API 0.1 test version available.
 – Preserves all query syntax of original Solr,
 – Prevents user from modification,
 – Hides the host machine and port number HTRC Solr is actually running on,
 – Creates audit log of requests, and
 – Provides filtered term vector for words starting with user-specified letter

• Test version service soon available
HTRC Solr index: most used API patterns

• ===== query
 http://coffeetree.cs.indiana.edu:9994/solr/select/?q=ocr:war

• ===== faceted search
 http://coffeetree.cs.indiana.edu:9994/solr/select/?q=*:*&facet=on&facet.field=genre

• === get frequency and offset of words starting with letter
 http://coffeetree.cs.indiana.edu:9994/solr/getfreqoffset/inv32000011575976/w

• ===== banned modification request:
Requirement: run big jobs on large scale (free or nearly free) compute resources
Data Capsules VM Cluster

Remote Desktop Or VNC

Provide secure VM

Submit secure capsule map/ reduce Data Capsule images to FutureGrid. Receive and review results

FutureGrid Computation Cloud

HTRC Volume Store and Index

Secure Data Capsule
HTRC block store
Take experiment with 5M vols (4TB uncompressed data.) Block abstraction at vol size or larger.

Mapreduce headnode. Partitions 4TB evenly amongst 1000 nodes. Trusted because run as user HTRC. User buffer needs to be copied to each map node.

User buffer for secondary data user submits for use in computation

Single source of write from map node. < 1GB per map node

Data Capsule nodes

Provenance capture (through Karma provenance tool)
FutureGrid allows researchers to experiment at all levels, including customizing network protocols and experimenting with new middleware. By using virtual machines running on real hardware, FutureGrid enables scientists to have full control over their testing environments without interfering with other users.

Scientists can also pursue interactive research and international collaboration, creating unprecedented potential for scientific discovery and innovation as they explore new uses for cloud technologies in science and engineering. Additionally, FutureGrid’s availability to university students familiarizes the next generation of workers with these paradigms and their applications.

PI: Geoffrey Fox
CoPIs: Kate Keahey, Warren Smith, Jose Fortes, Andrew Grimshaw
Software Lead: Gregor von Laszewski

FutureGrid is sponsored by NSF grant #091081–FutureGrid: An Experimental, High-Performance Grid Test-bed. Partners in the FutureGrid project include: Indiana University, University of Chicago, Texas Applied Computing Center, University of Florida, University of Virginia, San Diego Supercomputer Center, Information Sciences Institute, Purdue University, University of Tennessee, and Technical University Dresden.

An Experimental Grid Cloud and HPC Test-Bed

The FutureGrid project’s mission is to enable experimental work that advances innovation and scientific understanding of distributed and parallel computing paradigms and:

- The engineering science of middleware that enables them
- Their use and drivers by important applications
- The education of new generations of students and personnel

To learn how to join FutureGrid and apply for your own project, visit: portal.futuregrid.org/gettingstarted

Copyright 2011, The Trustees of Indiana University
About FutureGrid

FutureGrid is a distributed, high-performance test-bed that allows scientists to collaboratively create and test innovative approaches to parallel, grid, and cloud computing.

The test-bed comprises distributed clusters of high-performance computing resources connected to a high-speed network and linked to TeraGrid—the NSF’s national cyberinfrastructure for scientific research.

The FutureGrid project is led by Indiana University and funded by the National Science Foundation.

Typical FutureGrid projects

The flexibility in the configuration of FutureGrid resources enables its use across a variety of research and education projects. More than 120 projects are currently underway. The following are either complete or have attained significant achievements.

<table>
<thead>
<tr>
<th>Project</th>
<th>Institution</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Programming and Cloud Computing</td>
<td>Fresno State</td>
<td>Teaches system programming and cloud computing in different computing environments</td>
</tr>
<tr>
<td>REU: Cloud Computing</td>
<td>Arkansas</td>
<td>Offers hands-on experience with FutureGrid tools and technologies</td>
</tr>
<tr>
<td>Workshop: A Cloud View on Computing</td>
<td>Indiana School of Informatics and Computing (SOIC)</td>
<td>Boot camp on MapReduce for faculty and graduate students from underserved ADMI institutions</td>
</tr>
<tr>
<td>Topics on Systems: Distributed Systems</td>
<td>Indiana SOIC</td>
<td>Covers core computer science distributed system curricula (for 60 students)</td>
</tr>
<tr>
<td>SAGA</td>
<td>Louisiana State</td>
<td>Explores use of FutureGrid components for extensive portability and interoperability testing of Simple API for Grid Applications, and scale-up and scale-out experiments</td>
</tr>
<tr>
<td>Metagenomics Clustering</td>
<td>North Texas</td>
<td>Analyzes metagenomic data from samples collected from patients</td>
</tr>
<tr>
<td>Genome Assembly</td>
<td>Indiana SOIC</td>
<td>De novo assembly of genomes and metagenomes from next generation sequencing data</td>
</tr>
<tr>
<td>Physics: Higgs boson</td>
<td>Virginia</td>
<td>Matrix Element calculations representing production and decay mechanisms for Higgs and background processes</td>
</tr>
<tr>
<td>Business Intelligence on MapReduce</td>
<td>Cal State - L.A.</td>
<td>Market basket and customer analysis designed to execute MapReduce on Hadoop platform</td>
</tr>
<tr>
<td>Data Transfer Throughput</td>
<td>Buffalo</td>
<td>End-to-end optimization of data transfer throughput over wide-area, high-speed networks</td>
</tr>
<tr>
<td>Elastic Computing</td>
<td>Colorado</td>
<td>Tools and technologies to create elastic computing environments using IaaS clouds that adjust to changes in demand automatically and transparency</td>
</tr>
<tr>
<td>The VIEW Project</td>
<td>Wayne State</td>
<td>Investigates Nimbus and Eucalyptus as cloud platforms for elastic workflow scheduling and resource provisioning</td>
</tr>
<tr>
<td>ScaleMP for Gene Assembly</td>
<td>Indiana Pervasive Technology Institute (PTI) and Biology</td>
<td>Investigates distributed shared memory over 16 nodes for SOAPdenovo assembly of Daphnia genomes</td>
</tr>
<tr>
<td>XSEDE</td>
<td>Virginia</td>
<td>Uses FutureGrid resources as a testbed for XSEDE software development</td>
</tr>
<tr>
<td>Globus Online</td>
<td>Indiana PTI, Chicago</td>
<td>Investigates the feasibility of providing DemoGrid and its Globus services on FutureGrid IaaS clouds</td>
</tr>
</tbody>
</table>

Operational model

FutureGrid’s operating model is different from both TeraGrid conventional clusters and commercial clouds, achieving flexibility by dynamically provisioning software onto "bare-metal" instead of loading images onto virtual machines. FutureGrid supports a growing Image Library that features platforms such as:

- MPI
- gLite
- OpenMP
- Unicore
- Hadoop
- Globus
- Dryad
- Xen
Creating Functionality around Non-consumptive Research

Key notions
Notion of a Proxy

• “researcher” in Google Book Settlement definition means a human
• An avatar is a virtual life form acting on behalf of person
• Computer program acts on behalf of person
• Computer program (i.e., proxy) must be able to read Google texts, otherwise computational analysis is impossible to carry out.
• So non-consumption applied to books applies to human consumption.
Non-consumptive research – implementation definition

• No action or set of actions on part of users, either acting alone or in cooperation with other users over duration of one or multiple sessions can result in sufficient information gathered from collection of copyrighted works to reassemble pages from collection.

• Definition disallows collusion between users, or accumulation of material over time. Differentiates human researcher from proxy which is not a user. Users are human beings.
Notion of Algorithm

• Computational analysis is accomplished through algorithms
 – An algorithm carries out one coherent analysis task: sort list of words, compute word frequency for text
• Researcher’s computational analysis often requires running sequence of algorithms. Important distinction for implementing non-consumptive research is “who owns the algorithm”?
Infrastructure for computational analysis

• When needing to support computation over 10+M volume corpus, algorithms must be co-located with data.

• That is, algorithms must be located where repository is located, and not on user’s desktop.

• When computational analysis is to be non-consumptive, likely one location for the data.
Who owns algorithm?

- HTRC owns the algorithms,
 - use Software Environment for Advancement of Scholarly Research (SEASR) suite of algorithms
 - we are examining security requirements of users, algorithms, and data
User owns and submits their algorithms

• HTRC recently received funding from Alfred P. Sloan foundation to prototype “data capsule framework” that provisions for non-consumptive research.

• Founded on principle of “trust but verify”. Informatics-savvy humanities scholar is given freedom to experiment with new algorithms on protected information, but technological mechanisms in place to prevent undesirable behavior (leakage.)
Non-consumptive, user-owned algorithms infrastructure; requirements:

• Implements non-consumptive
• Openness – users not limited to using known set of algorithms
• Efficiency – Not possible to analyze algorithms for conformance prior to running
• Low cost and scale – Run at large-scale and low cost to scholarly community of users
• Long term value – adoption for other purposes
Categories of algorithms. Can fair use be determined based on categorization of algorithm? Or is all computational use fair use?
Algo results fair use?

• Center supplied
 – Easier because we know category of algorithm
• User supplied
 – HTRC is not examining code, so open question
Parting philosophy

• Finally, results of computational research that conforms to restrictions of non-consumptive research must belong to researcher
How to Engage

• Building partnership with researchers and research communities is key goal of the HathiTrust Research Center

• HTRC can give technical advice to researchers as they look for funding opportunities involving access to research data

• Upcoming “Fix the OCR and Metadata Shortage Community Challenge”: help us address couple key weaknesses of HT corpus